Product Profiling and Gender in Cassava Breeding: The Baseline

Hale Ann Tufan

26th July 2017
Outline

• Background/Rationale
• Results:
 • Nigeria
 • Gender based constraints and opportunities in Nigerian cassava production
 • Gendered cassava trait preferences
 • The “swellability” of gari
 • Uganda
 • Flour power: Kwin in Uganda
 • The Genetics of ”Softness”
• Summary/Next Steps
Contributors

Peter Kulakow
Chiedozie Egesi
Jean-Luc Jannink
Marnin Wolfe
Robert Kawuki
Ismail Y. Rabbi
Bello Abolore
Elizabeth Parkes
Maria Okoro
Dominique Dufour

Graham Thiele
Holger Kirscht
Olamide Deborah Olaosebikan
Eizabeth Oladejo
Tessy Madu
Ugo Chijoke
Joyce Haleeagoah
Bela Teeken
Adedayo Ogunade
Samuel Onwuka
Why Gender Responsive Cassava Breeding?

- Provide information that will enable development of varieties that meet producer, processor and consumer demands - increased adoption and impact

- Think like a company? Understand demand and consumer profiles - develop typologies

- Diversity of end users and equitably addressing their needs

- Better define traits and relative importance for users by “ground-truthing” preferred characteristics and refine phenotyping methods for breeding
NextGen Cassava: Accelerating the rate of genetic gain in cassava breeding

www.nextgencassava.org

Can NextGen Cassava become demand-led?

1. Profile user typologies, and identify gender-based constraints
2. For new traits, develop accurate phenotyping methods
3. “Fit” these traits into the cassava breeding product:
 • Understand the accuracy (heritability) with which we can measure it
 • Uncover genetic architecture and error correlations with other important traits (e.g., dry matter content and yield)
 • Quantify the extent to which this trait will affect variety adoption (i.e. its economic value)
4. Prioritize trait in selection indices
Cassava production in Nigeria presents different gender based constraints and opportunities

- Women had less access to improved varieties from extension services or research stations, but still tried new varieties when possible

 "Though our farm may not be as large as their own, though we do not inherit land and go to training meeting regularly, we do try out new things on our farms"

- General constraints to cassava production were similar between men and women. Women particularly mentioned weeding and poor fertility of land as issues, while men mentioned lack of mechanized farm equipment and inputs

Olaosebikan et al., submitted
Ranking by men and women very similar for different cassava traits…

<table>
<thead>
<tr>
<th>Cassava variety traits</th>
<th>Percentage</th>
<th>Rank men farmers</th>
<th>Percentage</th>
<th>Rank women farmers</th>
</tr>
</thead>
<tbody>
<tr>
<td>High yield</td>
<td>17.1</td>
<td>1</td>
<td>19.6</td>
<td>1</td>
</tr>
<tr>
<td>Poundability</td>
<td>13.4</td>
<td>2</td>
<td>7.3</td>
<td>5</td>
</tr>
<tr>
<td>Dry matter content</td>
<td>12.6</td>
<td>3</td>
<td>12.8</td>
<td>3</td>
</tr>
<tr>
<td>Taste</td>
<td>9.3</td>
<td>4</td>
<td>6.9</td>
<td>6</td>
</tr>
<tr>
<td>Fast/early maturing</td>
<td>7.6</td>
<td>5</td>
<td>10.5</td>
<td>4</td>
</tr>
<tr>
<td>Root size</td>
<td>7.1</td>
<td>6</td>
<td>15.3</td>
<td>2</td>
</tr>
<tr>
<td>Other agronomic characteristic</td>
<td>7.0</td>
<td>7</td>
<td>6.9</td>
<td>6</td>
</tr>
<tr>
<td>Other cooking /processing quality</td>
<td>6.0</td>
<td>8</td>
<td>3.0</td>
<td>10</td>
</tr>
<tr>
<td>Post-harvest shelf life</td>
<td>5.2</td>
<td>9</td>
<td>3.0</td>
<td>10</td>
</tr>
<tr>
<td>Fast cooking/mealiness</td>
<td>4.4</td>
<td>10</td>
<td>3.7</td>
<td>9</td>
</tr>
<tr>
<td>Flesh/root color</td>
<td>4.1</td>
<td>11</td>
<td>6.1</td>
<td>8</td>
</tr>
<tr>
<td>Good price/marketability</td>
<td>2.2</td>
<td>12</td>
<td>2.2</td>
<td>12</td>
</tr>
<tr>
<td>Resistance to pest and diseases</td>
<td>1.9</td>
<td>13</td>
<td>2.2</td>
<td>12</td>
</tr>
<tr>
<td>Labor requirement</td>
<td>1.1</td>
<td>14</td>
<td>0.2</td>
<td>15</td>
</tr>
<tr>
<td>Adaptation to extreme weather condition</td>
<td>0.8</td>
<td>15</td>
<td>0.5</td>
<td>14</td>
</tr>
</tbody>
</table>

Olaosebikan et al., submitted
... and for varieties ...

<table>
<thead>
<tr>
<th>Location</th>
<th>Ranking</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pontela-Akinola</td>
<td>Men</td>
<td>Molekanga</td>
<td>Oko iyawo</td>
<td>Arubielu/Egedudu</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Molekanga</td>
<td>Odongbo</td>
<td>Oko iyawo</td>
</tr>
<tr>
<td>Elere-Adeogun</td>
<td>Men</td>
<td>Dangaria</td>
<td>IITA</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Dangaria</td>
<td>IITA</td>
<td>Odongbo</td>
</tr>
<tr>
<td>Agodo</td>
<td>Men</td>
<td>Oko iyawo</td>
<td>Ege dudu</td>
<td>Adelowo</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Idileruwa</td>
<td>Adelowo</td>
<td>Ege dudu</td>
</tr>
<tr>
<td>Agbetu</td>
<td>Men</td>
<td>Texaco</td>
<td>Onigidudu</td>
<td>Olusumeje</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Lufodo</td>
<td>Idileruwa</td>
<td>Texaco</td>
</tr>
<tr>
<td>Oba Oke</td>
<td>Men</td>
<td>Arubielu</td>
<td>Oko iyawo</td>
<td>Ege funfun</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Oko iyawo</td>
<td>Arubielu</td>
<td>Tomunde</td>
</tr>
<tr>
<td>Iborro</td>
<td>Men</td>
<td>Idileruwa</td>
<td>Odongbo</td>
<td>Dajofolowo</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Idileruwa</td>
<td>Oko iyawo</td>
<td>Aporo-ofo</td>
</tr>
<tr>
<td>Umuoso</td>
<td>Men</td>
<td>Nwaocha</td>
<td>NR</td>
<td>Katikati</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Nwaocha</td>
<td>NR</td>
<td>Katikati</td>
</tr>
<tr>
<td>Imerienwe</td>
<td>Men</td>
<td>Nwankwo</td>
<td>Chigazu</td>
<td>Nwaonuhie</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Nwageri</td>
<td>Chigazu</td>
<td>Nwankwo</td>
</tr>
</tbody>
</table>

Olaosebikan et al., submitted
…yet reasons for ranking differ!

<table>
<thead>
<tr>
<th>Name of variety (type)</th>
<th>Reasons for preference</th>
<th>Reasons for preference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Molekanga (local)</td>
<td>high yielding, poundable, good for gari, marketable, early maturing (6-9 months). Also called poverty removal crop</td>
<td>poundable, root size, high yielding, weed suppression, low cost of production and early maturing. Also called food security friendly cassava variety</td>
</tr>
<tr>
<td>Oko Iyawo (local)</td>
<td>poundable, mealy, high yielding, early maturing (7-12 months) and resistant to pest and diseases</td>
<td>mealy, short time to cook, good taste and product quality for gari, eba, fufu and lafun</td>
</tr>
<tr>
<td>Dangaria (Improved)</td>
<td>good taste, white color, very tall with multiple stems for planting materials. Good for feeding livestock</td>
<td>high market demand, poundable, good root and product color, weed suppression, tall stems, good product quality for gari, fufu, and lafun</td>
</tr>
<tr>
<td>Idileruwa (local)</td>
<td>resistant to pests and diseases, In-ground storability without rotting, weed suppression, low cost of production</td>
<td>can survive after pest attack, underground storability without rotting, can stay for 3-4 days after harvesting, good product quality</td>
</tr>
<tr>
<td>Nwaocha (local)</td>
<td>dewater faster, high dry matter, late maturing, allows for intercropping</td>
<td>beautiful to behold, good plant architecture, ferments quickly 2-3 days, odorless, good product quality for abacha, fufu and gari</td>
</tr>
<tr>
<td>Nwankwo (local)</td>
<td>high yielding, marketable and early maturing</td>
<td>good product quality, high root number and early maturing</td>
</tr>
<tr>
<td>IITA (Improved)</td>
<td>pest and disease resistance, root size and shape, branches well and smothers weeds, can survive harsh conditions</td>
<td>High yielding, post-harvest in-ground storability, high dry matter content makes gari swell.</td>
</tr>
</tbody>
</table>

Olaosebikan et al., submitted
Men preferred IITA for its in ground storability (3 to 4 years without getting spoilt), and high yield. This was different for women, who largely focused on early maturity, taste and dry matter content.

Olaosebikan et al., submitted
The “Swellability” of Gari
• From FGDs the clearest difference in reasons for preference of varieties between men and women was “product quality”

• Women dominate cassava processing, logical that product (gari, fufu, lafun) processing is of specific importance

• Challenge is: how can we breed for “good product quality”?

• “Translate” local knowledge and units of description into standardized measurable trait variables for breeder on station selection

Defining “good product quality”

- **Low swelling**
 - Farmer description: SI = 1
 - Processor/breeder description: SI = 1

- **High swelling**
 - Farmer description: SI = 5
 - Processor/breeder description: SI = 5

Units:
- Qualitative description/hierarchy
- Swelling index (SI)
In baseline FGDs women farmers indicated that *gari* quality is an important criteria in selecting varieties for production, and mentioned “swelling” was key.

Follow on KII with processors (mostly women) uncovered 3 types of swelling:

1. Swelling of the *gari* when hot water is added and the *eba* paste is prepared
2. Swelling in the stomach: how heavy the *eba* feels in the stomach or how many time it takes before one gets hungry again
3. (Swelling) of the *gari* when being roasted (*gari* yield): The extent the *gari* does not shrink or even increases when the moisture is driven out during the roasting

Can we breed for swelling capacity of *Gari*?
• Higher starch content of the root results into higher swelling capacity \((\text{measure}=\text{starch content})\)

• The content of long chained (vs short chained) amylopectin may result in higher swelling \((\text{measure}=\text{amylose amylopectin ratio})\)

• Starch granule size is larger-swelling power decreases when temperature increases. At higher temperatures larger granules are associated with increased swelling \((\text{measure}=\text{starch granule size})\)
1. Gari is not fresh starch but also includes fiber and pectin cell walls
2. Gari undergoes a fermentation products of different lengths dependent on the preferences of the users
3. Gari is processed very differently across sites
4. Growth environment impacts starch quality/quantity?

How do these impact gari quality, especially “swellability”?

Do these compounding factors negate or amplify the varietal differences for gari quality? Can we breed for gari quality?

Not yet! New research needed to:
Need to define gari and user typologies, triangulate baseline data with participatory trials, processing and sensory evaluation
Flour Power: *Kwin* in Uganda

- Bitter cassava varieties still cultivated - flour making
- Zombo (NW) trait preferences of men and women + flour pasting properties of 12 genotypes based on the key trait preference by RVA profiling
- Two traits emerge for study: Sticky *kwin* and good water holding capacity
• “You can determine a nice cassava for eating when it gets ready after cooking, if it is soft and is not hard.”

• Unique genotypes amongst districts can explain some of observed difference in trait preferences across districts

• The variety name given by farmers in most cases do not depict unique accessions e.g. Bao

• Phenotyping tools under development (measuring softness)
Summary

- Transcription of “preferences” is problematic- cassava producers have a tacit feel about what works for them, and choose “trait packages”

- Understanding- quality traits like good for gari are still opaque- need considerable work to unpack these descriptions into “breedable” units

- What are “gendered traits”? Binary comparison of men vs women.

- New lines of enquiry to examine choice experimentation with traits (economic weights), participatory selection to triangulate trait packages, adoption study to track uptake of breeding lines, comparative study to examine impact of gender blind study design

Formulate breeding strategies in relation to the present and anticipated social dynamics in cassava cultivation and processing
THANK YOU!