Tag Archives: bioversity

CGIAR centres and research programs combine forces to reduce the damage of banana disease in Uganda

Bananas and plantains (Musa spp.) provide a major source of food and income for over 30 million people in Eastern and Central Africa (ECA). Uganda produces an estimated 10 million tonnes annually valued at about US$550 million. Most ECA bananas are domestically consumed with the highest global per capita consumption of over 200 kg. Banana Xanthomonas Wilt (BXW), a bacterial disease, emerged in Uganda in 2001 and has since proved to have a devastating effect on banana production, with up to 100% loss if no management practices are adopted. To control the disease, farmers can adopt a package of practices, including single diseased stem removal and cleaning of tools to prevent contamination. Alternatively, resistant cultivars are under development. Several policy interventions are thus available but it is not clear which will have the greatest impact on curbing the spread of BXW while minimizing the costs.

Bioversity International, under the umbrella of the CGIAR Research Program on Roots, Tubers and Bananas (RTB), organized a workshop in Kampala, Uganda, 1–2 February 2018, to understand better the socio-economic impact of BXW spread and quantify the role of policy interventions. The goals of the workshop were to:

  1. Finalize and validate the conceptual framework describing relationships between different elements of BXW spread and its socio-economic consequences, linking different scales – from farm to country levels
  2. Finalize and validate research questions of the study
  3. Identify what data, methods and models are available and what resources are needed to fill in the missing elements
  4. Generate a framework for linking the models 
  5. Formulate scenarios for simulation modeling, which would represent possible alternative future (until 2050) developments to inform policymakers
  6. Roadmap tasks and deliverables 

The research will answer the question: What will be the socio-economic impact of BXW spread in Uganda until 2050 if there are no policy interventions, and under different interventions?

A shrivelled male bud is a symptom of Xanthomonas wilt. Credit: Bioversity International/A. Vezina

This highly complex question requires an integrated modelling approach which can be modelled to see the impact of different interventions on banana production, producers’ revenue, market prices, consumption and nutrition, and link them to costs for different actors, starting from the government and ending with farmers. To address such different areas of focus and implications at multiple scales, from the farm to (inter)national level, the research brings together a highly multidisciplinary team hailing from different CGIAR research centres, different disciplines (agronomists, economists, plant pathologists, mathematicians), different CGIAR research programs, different flagships within the CGIAR Research Program on Roots, Tubers and Bananas, together with representatives of Makerere University and the National Agricultural Research Organization of Uganda.

This innovative research links various models in order to understand the economic impact of pest and disease spread. We start with the dynamic global partial equilibrium model – IMPACT, developed by the International Food Policy Research Institute (IFPRI) with support from the CGIAR Research Program on Policies, Institutions and Markets (PIM). This is an economic simulation model for analysis of long-term agricultural markets and food security. A crop disease mapping model based on statistical analysis of survey data will be combined with a mathematical model for disease spread dynamics, in order to inform the IMPACT model about the dynamics of BXW spread and its consequences for yield loss. Additionally, we will systematically assess costs borne by different actors in the food system. 

By combining expertise from RTB research clusters on resilient crops, banana bacterial wilt, improved livelihoods at scale, foresight and impact assessment, and sustainable intensification/ diversification, and linking those with the IMPACT model, we have the potential to make innovative breakthroughs that can truly make a difference in the management of the devastating BXW disease and defend Uganda’s economic base and food security. 

Read the original article and learn more about Banana Xanthomonas Wilt on the Bioversity International website. 

This research is part of the CGIAR Research Program on Roots, Tubers and Bananas and is supported by CGIAR Fund Donors. Additional support, for the IMPACT modelling part was provided by the CGIAR Research Program on Policies, Institutions and Markets (PIM) through the Global Futures and Strategic Foresight project.

Revolutionary mobile app for monitoring crop pests and diseases

Just as the late blight epidemic wiped out potato fields in Ireland in the 19th century, crop pests and diseases still have devastating effects on smallholder farmers today – with scenarios projected to worsen under climate change.

Cassava brown streak disease is spreading westward across the African continent, and together with cassava mosaic disease, threatens the food and income security of over 30 million farmers in East and Central Africa. Likewise, banana is threated by fungal and bacterial diseases and banana bunchy top virus, while sweetpotato is faced with viruses and Alternaria fungi.

Farmers are often unable to properly identify these diseases, while researchers, plant health authorities and extension organizations lack the data to support them.

To overcome these issues, a team under the CGIAR Research Program on Roots, Tubers and Bananas (RTB), are working on a revolutionary app to accurately diagnose diseases in the field, which will be combined with SMS services to send alerts to thousands of rural farmers.

Diagnosing cassava disease in the field. Photo IITA

The team, led by David Hughes of Penn State, and James Legg of IITA – who leads RTB’s flagship project on Resilient Crops – together with scientists from CIAT, CIP and Bioversity International, are presenting their proposal as one of 12 finalists for a $US100,000 grant as part of the CGIAR Platform for Big Data in Agriculture Inspire Challenges at the Big Data in Agriculture Convention 2017 in Cali, Colombia this week.

The concept leverages three critical advances in how knowledge is communicated to the farm level: 1) the democratization of Artificial Intelligence (AI) via open access platforms like Google’s TensorFlow, 2) the miniaturization of technology allowing affordable deployment and 3) the development of massive communication and money exchange platforms like M-Pesa that allow rural extension to scale as a viable economic model enabling last mile delivery in local languages.

Painstaking field work using cameras, spectrophotometers and drones at RTB cassava field sites in coastal Tanzania and on farms in western Kenya has already generated more than 200,000 images of diseased crops to train AI algorithms.

Using many of these images, Hughes, Legg and collaborators were able to develop an AI algorithm with TensorFlow that can automatically classify five cassava diseases, and by collaborating with Google, the team have been able to develop a TensorFlow smartphone app that is currently being field-tested in Tanzania. Penn State has also developed a mobile spectrophotometer through a start-up called CROPTIX. Early results suggest it can accurately diagnose different viral diseases in the field, even if the plant looks healthy.

 “The concept leverages RTB’s global network across multiple crops for testing and scaling with national partners and the private sector in all three continents where we work. This technology will enable small-scale farmers to quickly take action and stop the spread of pests and diseases in their farms, protecting these critical sources of food and income security,” said Graham Thiele, RTB Program Director. “We are really excited about this initiative and delighted to be teaming up with Penn State,” he added.

A Tanzanian farmer examines his cassava plants for the presence of pests and disease. Photo H.Holmes/RTB

The project team has already developed linkages with the Vodafone agriculture SMS platform called DigiFarm, which positions them strategically to link digital diagnostics to large-scale rural text messaging services. The team will deliver farmer tailored SMS alerts on crop diseases and pests to 350,000 Kenyan farmers by July 2018.

Once the diagnostic and SMS systems are up and running, their impact will be determined by assessing how rapid disease diagnosis increases yield in cassava value chains in Kenya involving 28,000 farmers.

An existing platform housed by Penn State (www.plantvillage.org) will enable real time discussions of disease and pest diagnoses across the CGIAR community and with other experts to enhance SMS alerts from the DigiFarm platform.

It’s is envisaged that these innovations, initially piloted in East Africa, will provide a model that can be extended to the range of locations where RTB works, and in so doing impact the farming and livelihoods of hundreds of millions of farmers.

See more in the project flyer. 

Spotlight on scaling agricultural technologies

The CGIAR Research Program on Roots, Tubers and Bananas (RTB) has ambitious targets to improve the lives of millions of men and women who depend on root, tuber and banana crops by 2022. Achieving those targets means focusing on the most promising technologies and innovations. And it means linking these innovations with the tools and approaches that can take them to scale.

As RTB commences its second phase, it is opportune to shine a spotlight on our approaches to scaling and how they enhance the innovations developed through the program that have the potential to be adopted by millions.

Towards this, RTB held a World Café style event on 10 March in Dar es Salaam, Tanzania, to match scalable technologies with approaches and tools for scaling, while increasing participants’ understanding of both the technologies and scaling approaches.

Selected RTB program targets by 2022. All program targets align with the SDGs (Click to enlarge)

The event brought together researchers from across RTB’s five program participant centers – the International Potato Center (CIP), the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT), Bioversity International and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) – along with donor representatives, Tanzanian national partners, and other partners including Wageningen University and the Natural Resources Institute.

‘Scalable technologies’ are innovations that have resulted from RTB research and which are either already adopted by farmers or other users, or will be adopted over the next three years. Additionally, the technology must have – or will have – a large number of beneficiaries. An outstanding example of a scalable technology is the orange fleshed sweetpotato for health and nutrition improvement, already adopted by over 2 million households, for which three CIP scientists were awarded the prestigious World Food Prize in 2016.

During the World Café, participants circulated among posters of their choice in small group discussions, rotating every 15 minutes and sharing their thoughts on what might be the ‘roadblocks’ or ‘accelerators’ to scaling for each innovation.

Participants rotated to a new poster every 15 mins. Each poster could have a maximum of 10 visitors at any one time to encourage effective conversations. Photo H.Holmes/RTB

Posters were divided in the three categories throughout the day: 1) scalable technologies for varieties and seed, 2) scalable technologies for resilient cropping, postharvest and nutrition and sustainable intensification, and 3) approaches and tools for scaling, innovation and enhancing gender relevance.

“The ‘speed-dating’ between RTB’s natural and social scientists led to new ideas on how to further improve the scaling of RTB innovations,” reflects Dr. Marc Schut, IITA Social Scientist and leader of RTB’s Flagship Project 5 on Improved Livelihoods at Scale.

During the event, several scientists commented that the exercise had changed their perceptions of the complexity of the science surrounding scaling and what the process entails, along with a greater awareness of the importance of considering scaling from the outset of a project.

Likewise, social scientists working on scaling of innovations also shared that the small-group discussions led to ideas of how the approaches to scaling could be tailored to better suit certain technologies.

Participants shared factors that could act as ‘roadblocks’ and ‘accelerators’ to the scaling of technologies presented in categories 1 and 2. Photo H.Holmes/RTB

For Juma Kayeke, an agronomist from the Tanzanian Agricultural Research Institute (TARI) based in the region of Mbeya, the workshop provided exposure to new technologies and approaches, and the chance to further connect with partners.

“It was so valuable to interact with people from different backgrounds, specializations, research areas and crops… In the tools and approaches for scaling category, I was particularly interested in the decision support tools, because sometimes when we are talking with farmers and extension officers they get very bound to what they should do at specific times in the farming cycle. If they could have a support tool to enable make decisions about what actions to take at what times, that would be a big breakthrough,” he added.

One technology that stood out on the day to Schut was the AdiosMacho pesticide developed by CIP, which attracts and kills male potato tuber moth species, reducing the population of the pest.

“The scaling of RTB innovations requires focused strategies and human and financial resource investments, and this was clearly shown in the AdiosMacho technology. AdiosMacho evolved from a research product towards a commercial product, and together with the public and private sector roadblocks have been systematically addressing. We need to learn from these cases to accelerate the scaling of other RTB innovations,” he explained.

Examples of ‘roadblocks’ and ‘accelerators’ to scaling of the AdiosMacho technology presented in the poster. (Click to enlarge)

RTB’s Flagship Project 5 will build on the World Café with a repository of scalable RTB innovations, and seek to accelerate scaling, by sharing tools and approaches with projects and scientists in the other RTB Flagships, for sustainable development impacts.

Posters of scalable technologies and of tools and approaches for scaling are available for download from the event page.

The nuts and bolts of collaborative research on roots, tubers and bananas: RTB Annual Meeting

As the CGIAR Research Program on Roots, Tubers and Bananas (RTB) kicks off Phase II, the team came together in Dar es Salaam, Tanzania, for an annual review and planning meeting from March 11 – 12.

The meeting built on the momentum from the RTB World Café on Scalable Technologies which took place the day before, and along with updates of progress, focused on refining the nuts and bolts of collaboration to build effective flagship project and cluster teams. 

The event brought together over 80 researchers from across RTB’s five program partner centers – International Potato CenterInternational Institute of Tropical AgricultureBioversity International, International Center for Tropical Agriculture and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) – along with colleagues from other partners including Wageningen University.

Over 80 participants from RTB partner centers came together for the annual meeting in Dar es Salaam, Tanzania. Photo H.Holmes/RTB

Graham Thiele, RTB Program Director set the scene with an analysis of strength, weaknesses, opportunities and threats in the program, and some key responses to the address the points identified in the analysis.

“RTB is entering its second phase in a strong position. We had one of the highest rated proposals for Phase II, we have clear impact pathways to reach our targeted outcomes by 2022 and our alliance model means we have cemented, effective partnerships that will be critical to allow us to reach those goals. However, we also have areas to improve upon – The cost and complexity of coordinating such a large-scale program with over 350 partners is a challenge, as is the need to carefully steward our W2 funding and  mobilize funding for cross cutting opportunities,” explained Thiele.

“We also need to strengthen flagship leader’s roles in science quality and knowledge management, and cluster leader’s roles in project management, along with maintaining the ‘glue’ of collaboration in cross cutting areas,” he added.

Anne Rietveld shared a program update on gender research, highlighting the successful collaboration with the Gender Responsive Researchers Equipped for Agricultural Transformation (GREAT) project, which provided training to agricultural researchers from sub-Saharan Africa on gender-responsive research for root, tuber and banana crops in 2016.

Claudio Proietti explained the progress of the new Monitoring, Evaluation and Learning (MEL) Platform launched at the end of 2016 as an all-in-one modular platform for improving planning, management, monitoring, evaluation, and reporting. 

Holly Holmes presented progress in RTB communications and outreach, including tracking digital analytics and engagement, and highlighting RTB’s interactive 2015 Annual Report website.

Conny Almekinders (center) of Wageningen University, summarizes key discussion points from the Flagship Project 2 session with the broader group. Photo H.Holmes/RTB

Flagship project leaders held interactive groupwork sessions with their teams, which are ordinarily geographically dispersed. A key output of the lively groupwork was a one-year timeline for each flagship detailing key upcoming events and moments in the project calendar, together with ideas for resource mobilization. As each FP presented their timeline and key discussion points to the broader group, members of other flagships identified areas of synergy and cross-flagship collaboration.

Simon Heck, Flagship Project 4 (FP4) leader, noted that the meeting had helped the team to come together and build some momentum.

“This was the first physical meeting of the FP4 team. We discovered that our different crop research groups are already working towards similar goals – strengthening the consumer focus of our research, supporting innovation that diversifies the use of RTB crops, and finding solutions for managing the perishability and environmental footprint of RTB crops as the food systems become more complex,” Heck explained.

Simon Heck (center left) and members of the FP4 team in group discussion. Photo H.Holmes/RTB

“The session gave us a sense of common purpose, and greater confidence that, by working together in the flagship, we can address these large questions more effectively and realistically. As an immediate next step, scientists from all partners and clusters are now contributing to a compelling cross-cutting research agenda for the flagship and are committing to joint research proposals on some key research issues affecting several RTB crops. It was a real energizer for FP4 and many of us will meet again in June to produce the first set of joint outputs,” he added.

Other participants divided into small groups to discuss practical guidance and next steps on the following areas:

  • Coordination and communication of, and between, clusters
  • Strategic Innovation fund
  • Monitoring and Evaluation
  • Big Data Platform
  • Excellence in Breeding Platform

The outputs of these discussions can be found in the annual meeting report.

In order to improve the lives of millions of men and women who depend on root, tuber and banana crops by 2022, it’s essential to ensure we have the nuts and bolts in place for an effective program team. To this end, the RTB Annual Review and Planning Meeting helped to solidify new flagship and cluster teams, and position the group for a strong start to Phase II.

For more detailed information about the meeting, please see the RTB Annual Review and Planning Meeting Report.

Expanding the horizons of biodiversity for sustainable food futures

The biodiversity of domesticated biota and food-supplying ecosystems holds unparalleled importance for breeding and crop and livestock improvement. This importance has fueled decades-long emphasis and debate on germplasm collections and in situ genetic resources. But the range of interest in agrobiodiversity is also expanding.

Now a new article in the journal Nature Plants by Karl Zimmerer, Pennsylvania State University, and Stef de Haan, International Center for Tropical Agriculture, is focused on these expanding horizons. Their article is entitled “Agrobiodiversity and a Sustainable Food Future.” It crystallizes the four-part framework that is emerging from recent advances and interest. The framework is highly relevant for the CGIAR Research Program on Roots, Tuber and Bananas (RTB), which is one of the main CGIAR Research Programs investing in the broader sustainability implications of agrobiodiversity.

Agricultural landscape in Vietnam. Photo S.DeHaan/CIAT

In their Nature Plants article Zimmerer and de Haan draw on new contributions in research, development, policy, academic, and activist institutions worldwide. The article reflects the ‘Agrobiodiversity in the 21st Century‘ forum held last October in Frankfurt at the Institute for Advanced Studies with support from the Strungmann Foundation.

35 international scientists, scholars, and practitioners, including several from the RTB community, participated. Agenda-setting came from the advisory committee of Connie Almekinders, Stephen Brush, Timothy Johns, and Yves Vigoroux, in addition to de Haan and Zimmerer. The Foundation is providing vital support that includes the resulting book (Agrobiodiversity in the 21st Century, to be published in early 2018 by the MIT Press).

Food, Nutrition, and Health
This focus is central to the expanding horizons of agrobiodiversity. The new UN “2030 Agenda for Sustainable Development” calls for agrobiodiversity to contribute to food security, nutrition. and health. This use links agrobiodiversity to food systems, producer and consumer choices, human nutrition and economic development. This is essential for root, tuber and banana crops as food preferences and uses are main drivers of on-farm conservation. Furthermore, evidence is highlighting the complementary nature of bred varieties and landraces in rural and urban food systems alike.

Genetic Resources, Ecology, and Evolution
Expanding emphasis on the resilience and sustainability of food biodiversity is related to cultural, agroecological, and evolutionary interactions. There is a suite of new research among agroecologists, biogeographers, culture-and-plant researchers, evolutionary biologists, and geneticists. This expansion of concept- and information-based approaches is linking molecular techniques to agroecological experimentation, cultural practices and histories, innovative monitoring, and “big data” methods. It is essential for RTB’s spearheading a robust monitoring framework, e.g. the Chirapaq Ñan Initiative of the International Potato Center in Latin America, which can up- and out-scale across crops and centers of diversity.

Farmers harvest native potato varieties in Peru. Photo S.DeHaan/CIAT

Governance Challenges and Opportunities
Governance mechanisms for agrobiodiversity have been broadened to involve multiple international arrangements, though with incomplete results to-date. Still community, grassroots, and civil society organizations are experimenting with innovative institutions and actions. Many regions rely on robust informal seed networks of food plant biodiversity whose strengths also require scientific and policy support. Not only RTB genetic resources need to be governed, but also the associated OMICS information.

Global Change and Social-Ecological Interactions
Individuals and societies increasingly confront the challenges of global climate, demography, land use intensification and planning, and the large-scale integration of food systems and global markets, as well as urbanization and peri-urban expansion. These interactions also crosscut each of the above areas of focus. Social-ecological interactions amid global change is actively triggering the loss as well as the enrichment and conservation of the biodiversity of agriculture and food.

Native potato varieties from Peru

Potato landraces in Peru. Photo S.DeHaan/CIAT

Rice varieties on display at a market in Hanoi, Vietnam.

Rice varieties on display at a market in Hanoi, Vietnam. Photo S.DeHaan/CIAT

The findings in Zimmerer and de Haan’s new article demonstrate the need for integrative approaches within and among each of these four areas of expanding horizons. Integration also underscores the complex roles of smallholder and indigenous people. These key stakeholders continue to comprise a major segment of the world’s population that is most culturally aware and knowledgeable about agrobiodiversity while being disproportionately food-insecure and impoverished.

Their emerging framework promises to have practical usefulness for the program’s phase II work on genetic diversity. More broadly it also reflects the RTB community, which is among the most active and innovative interdisciplinary groups researching the multiple dimensions of agrobiodiversity use and evolution in a globalized world.

This article was contributed by Karl S. Zimmerer (Pennsylvania State University) and Stef de Haan (International Center for Tropical Agriculture)

RTB-ENDURE banana project offers solutions for postharvest losses

Researchers collaborating under the ‘Expanding utilization of roots, tubers and bananas and reducing their postharvest losses’ (RTB-ENDURE) banana sub-project have identified solutions that will help Ugandan banana farmers and traders reduce income loss due to poor handling of their produce. The solutions were officially launched during the subproject’s final event which took place on 25-26 November 2016 in Masaka and Rakai Districts, Uganda.

Uganda produces about 10 million tons of banana per hectare per year , from an estimated 1.3 million hectares nationwide. For ordinary Ugandans, cooking banana is not just a staple crop but part of the socio-cultural fabric of the smallholder households and is used for medicine, bride price and marriage negotiations, birth and death rituals. The crop has been ranked number one for drought resilience in areas of the cattle corridor which are prone to prolonged droughts and frequent floods.

Participants listen during a session at the Final Event in Masaka. Photo by J.Turyatemba/Bioversity Internationa

In the event’s opening remarks, Dr Eldad Karamura, Bioversity International Regional Representative, said that in the last 15 years, NARO-Uganda and Bioversity International have collaborated on many banana research projects, largely in the pre-harvest sector of the value chain, including diversity conservation. He added that Bioversity International will move to further strengthen the postharvest sector to address hidden hunger in children and young mothers by promoting the consumption of vitamin A- and iron-rich bananas at the household level.

The banana sub-project is part of the larger RTB-ENDURE project implemented by CGIAR Research Program on Roots, Tubers and Bananas (RTB) with funding from the European Union and technical support of IFAD. The overall purpose of the RTB-ENDURE project is to improve food availability and income generation through enhanced postharvest management and expanded use of RTB crops in Uganda.

As part of the activities that took place to mark the final event of the project, a science day was held where research findings were disseminated to an audience consisting of researchers, banana farmers, civil society, government agencies, the media, agro-processors, exporters and local government officials.

At the event’s science day, Dr. Diego Naziri, RTB-ENDURE Project Coordinator, explained that bulkiness and high perishability of RTB crops coupled with poor postharvest handling and lack of processing and storage facilities result in a short shelf life, high postharvest losses and limited value addition.

The banana sub-project adopted the Participatory Market Chain Approach (PMCA) developed by the International Potato Center (CIP). Under this design, all actors (farmers, collectors, wholesalers, retailers, exporters, researchers, non-governmental organizations, etc.) in the banana value chain are brought together to jointly identify, analyse and exploit market innovations.

A Ugandan banana exporter prepares her produce. Photo S.Quinn/CIP

According to Dr. Enoch Kikulwe, the banana sub-project coordinator, 18.2% of all the cooking bananas produced in Uganda (corresponding to 47.3% of traded bananas) suffer postharvest losses. Of this amount, 8.9% of the bananas deteriorate completely and have no residual value while 9.3% only deteriorate partially and are sold at prices lower than their normal market rates. This particularly impacts retailers, who are largely women.

In order to maximize sales and income, farmers are advised to concentrate on banana varieties that already have an existing market and high untapped demand. The available identified varieties include Mbwazirume, Kibuzi, Musakala and Nakitembe.

In a gender analysis undertaken as part of the project by Susan Ajambo, a Gender Specialist with Bioversity International, it was found that women are concentrated in banana retail, which is the least profitable node of the value chain. The project therefore supported women to participate in the more profitable nodes of the value chain, such as in wholesale and the production of healthy planting material. According to Ajambo, both men and women have already embraced the macro-propagation technique and have established commercial chambers for selling clean banana plantlets of selected varieties.

Among the other areas, the project has also identified optimum harvest time and storage conditions for bananas, developed market linkages, trained hundreds of farmers in enhanced postharvest handling and piloted sales by weight.

During the final event, a tour to a commercial seed multiplication chamber and a mother garden at Ddwaniiro in Rakai district was also organised where farmer groups held practical demonstrations of the new techniques of multiplying popular banana variety cultivars for commercial farming.

A number of institutions partnered in the project, including the International Institute of Tropical Agriculture (IITA), CIRAD, NARO, KAIKA InvestCo, Uganda Fruits and Vegetable Exporters and Producers Association (UFVEPA), district local governments, and the Ssemwanga Group.

The project activities have been piloted in South-west Uganda in the districts of Rakai and Isingiro. This region produces 68% of the cooking bananas harvested in Uganda. The project began in 2014 and ended in December 2016.

Blog contributed by Joshua Turyatemba of Bioversity International 

Uganda President Museveni officiates at Bioversity International Banana Farmers Day

Story by Joshua Turyatemba for Bioversity International

Banana is one of the most important sources of food and income in Uganda. People consume on average 7 bananas per day and the local word for bananas – matooke – means food.

Last Friday 11 November 2016, Ugandan President Yoweri Museveni officiated at the first Banana Farmers’ Day, held in the South-Western district of Bushenyi. The district is one of the most affected by the banana bacterial wilt (BBW) infestation that peaked in 2013, with some farmers losing entire plantations and their source of income.

In a collaboration involving Bioversity International, the National Agricultural Research Organization-NARO, together with the Kenyan counterparts – the Kenya Agricultural & Livestock Research Organization – and the Rural Energy and Food Security Organization, scientists piloted a project and used control measures that saw the disease incidence reduced by 90-98% within 6 months of intervention.

The President visited one of the farm households involved in the project who had excelled at combating BBW using the control tools developed by Bioversity International and NARO. He later toured an exhibition of banana-related inputs and products and local projects such as the community seedbank.

Dr. Eldad Karamura, Bioversity International Regional Representative for Eastern and Southern Africa, welcomes President Museveni to the first Banana Farmers Day in Bushenyi, Uganda. Photo: J.Turyatemba/Bioversirt

Dr. Eldad Karamura, Bioversity International Regional Representative for Eastern and Southern Africa, welcomes President Museveni to the first Banana Farmers Day in Bushenyi, Uganda. Photo: J.Turyatemba/Bioversirt

In appreciation of the effort, the President offered four heifers to the homestead to enable them to increase their income as well as a source of manure for the banana plantation, which has since recovered and is now very productive. In the Bushenyi district, the disease incidence on farm has been brought down from 70-100% in 2012 to 2-5% currently.

Addressing the guests later at the ceremony, President Museveni said he is committed to ensuring that incomes at household level increase through mixed farming: “If a person has 4 acres, it is possible that by planting bananas, tea, coffee and rearing animals he can generate over 100 million Uganda shillings per year.”

Giving the example of Mr. Stanley Rwabukye, the host farmer who currently generates about 20 million shillings, the President said that he wants to see such models replicated all over the region and the country in order to get people out of poverty. “I am always talking about commercial farming. I am happy to see it is being done and that there are fruits. We need to address the bottlenecks of lack of water, poor soil and improve seed varieties,” he added.

Addressing the President and guests on behalf of Bioversity International, former Director General, Emile Frison, said:  “We are very pleased to work with such a strong collaboration of partners in Uganda to improve productivity, address food security and nutrition for smallholder households.”

As part of the project to combat BBW using the Learning and Experimentation Approaches for Farmers (LEAFF) management tool, competitions were held to select the best farmers out of 10 groups of 10 households each. The first and second overall winners – Mr. Stanly Rwabukye and Mr. Juvenal Mugyizi –received heifers. All the participating farmers went home with a gift.

The McKnight Foundation, who funded the project, and the project implementers Bioversity International and NARO were honoured with awards for their support and intervention by the BBW project farmers. The chief guest, President Museveni received an award by Bioversity International for his “wise leadership and support for agriculture in East and Central Africa.”

In his remarks, Dr. Eldad Karamura, the Bioversity International Regional Representative for Eastern and Southern Africa, emphasized that the control measures for BBW had been tested and found to be working effectively. Karamura added: “The Banana Farmers’ Day is an occasion for celebrating partnerships that were forged in combatting BBW as well as the recovery of livelihoods relying on bananas for income.”

The event was held under the theme ’Bananas for Better Livelihoods’ and attracted a large number of guests from the research, academic, policy, local leadership and agricultural sectors. The Banana Farmers’ Day was also attended by the Minister of Agriculture, Animal Industry and Fisheries; the Minister of Science, Technology and Innovation; and the Minister for General Duties in the Office of the Prime Minister; and Members of Parliament from the district.

This research is part of the CGIAR Research Program on Roots, Tubers and Bananas.

RTB Impact Assessment team take stock of progress and plan for Phase II

Assessing the impact of the CGIAR Research Program on Roots, Tubers and Bananas’ (RTB) research and development initiatives is a core part of the program’s work. To take stock of progress on RTB’s impact assessment studies currently underway and identify upcoming opportunities for the program’s second phase, RTB’s Impact Assessment team came together in Boston on July 31.

Representatives from RTB partner centers, including Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA) and the International Potato Center (CIP) presented updates on ongoing RTB related impact assessment activities.

Updates were shared on working papers on strategic research priorities for potato, sweetpotato, cassava, yam and banana.

Potential areas of collaboration for RTB’s second phase were also highlighted: including investigating the global impact of root, tubers and banana crops, modeling and analyzing impacts of sustainable intensification and on rural transformation, and meta-analysis of post-harvest losses for all RTB crops.

The meeting also provided an opportunity to look at potential partnership strategies for future work with MSU and Virginia Tech.

“During the first phase, RTB centers worked together on the strategic assessment of RTB research priorities and advancing critical impact studies for each crop. We need to keep the momentum in the second phase, but we will need to focus on the impact on the system as a whole and beyond the farm-gate. For this, we will need good partnerships to develop and apply appropriate methods,” said Dr. Guy Hareau, Agricultural Economist, International Potato Center.

An enumerator from CIP surveying a C88 potato farmer. Photo: CIP

An enumerator from CIP surveying a C88 potato farmer. Photo: CIP

The meeting followed the CGIAR’s Standing Panel of Impact Assessment (SPIA) meeting from July 29 – 30, during which Dr. Hareau presented the preliminary results of the adoption of the Cooperation 88 (C88) potato variety in China.

Developed through a collaboration between CIP and Yunnan Normal University (YNU) with the goal of breeding a high quality, late blight resistant variety, C88 was named and released as a cultivar in 1996. By 2009, it covered 186,667 hectares and was the most widely grown variety in Yunnan, China.

To measure the impact of the variety, a collaborative effort funded by SPIA and with additional funding from RTB, was undertaken by CIP, Virginia Tech and YNU. The study aims to verify previous adoption estimates of C88 in Yunnan and determine the economic benefits it has brought to consumers and producers in China.

During the SPIA meeting, Dr. Enoch Kikulwe of Bioversity International also presented an overview of RTB’s planned impact assessment activities under the program’s newly developed Flagship Project 5 on ‘Improving Livelihoods at Scale’.

Learn more about RTB’s Impact Assessment work

Linkages between staple crops research and poverty outcomes

The Independent Science and Partnership Council’s (ISPC) Science Forum 2016 from 12 – 14 April in Addis Ababa, Ethiopia, will focus on the contribution of agriculture to reducing poverty under the topic: “Agricultural research for rural prosperity: rethinking the pathways”.

Co-hosted by the United Nations Economic Commission for Africa, the forum will rethink the pathways for agricultural research to support inclusive development of rural economies in an era of climate change, collecting evidence and building on lessons learned to suggest an updated list of priority research areas and approaches.

A breakout session during the forum will concentrate on the linkages between research on the staple crops of roots, tubers, bananas, maize, rice and wheat, and poverty outcomes.

A young woman sells root and tuber crops at a roadside market in Kampala, Uganda. Photo S.Quinn/RTB

A young woman sells produce including root and tuber crops at a roadside market in Kampala, Uganda. Photo S.Quinn/RTB

A collaborative endeavor jointly organized by the CGIAR Research Programs on Roots, Tubers and Bananas (RTB), Wheat, Maize, and Rice (GRISP), the session will begin with a presentation by Jeff Alwang of Virgina Tech, jointly delivered with Elisabetta Gotor (Bioversity International), Guy Hareau (International Potato Center), Jordan Chamberlin (International Maize and Wheat Improvement Center) and Graham Thiele, Program Director, RTB. Following the presentation, the session will review theories of change and build on evidence that demonstrates the impact that international agricultural research working on these staple crops has had on reducing poverty.

“Innovations in root, tuber and banana crops have tremendous impact on poverty reduction by increasing farmers’ income through raised productivity, providing and strengthening linkages to markets, adding value and enhancing rural employment with better incomes through processing – which is often predominantly a woman’s activity,” explains Graham Thiele.

Growth in agricultural productivity, generating employment, and increasing farmers’ incomes are major pathways that link research to poverty reductions.

“Increasing productivity can also lower the cost of these nutritious staple foods for poor consumers and is essential for more viable value chains which generate employment especially for youth and women,” Graham adds.

A woman and man harvesting banana in Uganda. Photo S.Quinn/RTB

A woman and man harvesting banana in Uganda. Photo S.Quinn/RTB

To date, impact analysis has largely focused on the ‘economic surplus approach’ to estimate standard rates of return to the research. However, donors want to be better informed about impact more closely related to development goals of food security, poverty reduction and environmental sustainability. Assessing the impact of agricultural research is also critical for reasons of accountability, attribution, strategic planning and allocation of resources.

Despite the increasing interest and several ex ante assessments, including poverty dimensions, examples of ex post poverty assessments are scarce in the literature.

After reviewing the impact pathways for staple crop research and their supporting evidence, the session will draw on small group discussion among attending experts and develop a short paper synthesizing the key findings and conclusions of the session.

RTB’s ‘Foresight and Impact’ cluster of activity, led by Elisabetta Gotor, aims to enhance the program’s impact by guiding current and future investments of donors, policymakers, researchers and other practitioners on major opportunities and threats for RTB innovations at crop and systems levels.

Elisabetta Gotor comments that “the cluster’s research in this area will improve the targeting and tailoring of RTB innovations for next and end users, by providing insights on existing and future drivers of technology adoption.”

Read and download RTB’s current impact assessment reports for root, tuber and banana crops on our Impact Assessments page.

A year in review: Highlights from the RTB Annual Meeting 2015

The Annual Review and Planning Meeting of the CGIAR Research Program on Roots, Tubers and Bananas (RTB) took place last week from 8 – 10 December, 2015 in Lima, Peru.

The event was hosted by the program’s lead center, the International Potato Center (CIP), and brought together over 50 researchers from the five program partner centers – the International Institute of Tropical Agriculture, Bioversity International, the International Center for Tropical Agriculture, CIRAD and CIP – along with colleagues from other partners including Florida State University and Wageningen University. A representative from a key RTB donor, USAID, also attended the event to share in this year’s highlights.

23573958681_4474c2e3e5_o_CROPOver three days, participants reported on highlights and key achievements from the program’s six research themes, which led to enthusiastic and constructive discussion about the results and next steps for the program in 2016. The collegial and dynamic atmosphere set a positive tone for the year ahead as RTB prepares to undergo a significant shift away from research ‘themes’ to ‘flagship projects’ in 2016.

Selected highlights from the Annual Meeting:

Theme 1 – Unlocking the value and use potential of genetic resources

  • Through complementary funding, RTB has enabled the application of next generation sequencing to change our understanding of genetic diversity, genetic resource collections and breeding populations of root, tuber and banana crops.
  • In several crops, including potato and cassava, we are gaining an understanding of the identity of crop varieties, the status of duplication and misidentifications. This is enabling a much higher level of quality control of information on germplasm and breeding populations to assist with more efficient use of RTB resources.

Theme 2 – Accelerating the development and selection of varieties with higher, more stable yield and added value

  • Metabolomics has been successfully applied to banana, potato, and yam to identify differences between genotypes and treatments.
  • DNA sequencing could separate genepools in cassava based on origin. Sequencing data has proven useful to improve the cassava genome. Further gene characterization raises the question of perhaps using genome editing to reduce cyanide levels in cassava.
  • Genome-Wide Association Studies have applied in banana for the first time, and have identified candidate genes for seedlessness.
  • A ‘Trait Observation Network’ to close potato yield gaps in Africa and Asia started this year and involves extensive G x E phenotyping for drought, late blight, virus resistance, and maturity of already genotyped breeding panels.
  • Shovelomics and other root phenotyping methods to analyze root architecture in relation to drought stress shows potential for screening genotypes at early development stages, as root weight and root dry matter weight is correlated with sweetpotato storage root yields.

Theme 3 – Managing priority pests and diseases

  • Results of work on degenerative diseases show that positive selection, which involves visually identifying and selecting only symptomless plants as the seed source for the next generation, can be as effective as the use of clean seed where selection can be done accurately.
  • Pest Risk Analysis along an altitude gradient was used as a proxy for climate change, and revealed that some diseases have higher incidence at lower altitude, and some have higher incidence at lower levels. Hence, climate change is expected to have some positive and negative effects.
  • Crop land connectivity was used to assess risk for invasion and saturation by pathogens and pests, and showed that the Great Lakes region in East Africa has the highest threat for RTB crops combined.
  • An interdisciplinary Banana Bunchy Top Disease Alliance was set up, and practicable models, tools and procedures for containment and recovery were developed.
  • Single Diseased Stem Removal has been found to be a very effective and farmer-friendly method for controlling Banana Xanthomonas Wilt.
  • A successful Private-Public Partnership has been set up to reduce pesticide use to control Potato Tube Moth through the development of a pheromone-based control strategy that attracts and kills the pest.

Theme 4 – Making available low-cost, high quality planting material for farmers

  • A conceptual framework was developed to analyze RTB seed systems, extract lessons and generate recommendations for improving the design and implementation of future interventions.
  • Quality Declared Quality Planting Materials as an alternative to formal certification is a lower cost and more feasible opportunity for seed system with RTB crops where seed is typically bulky and/or perishable.
  • A key message of the research in this theme was that understanding gender roles in seed systems is critical for positive impact.
  • How can positive selection of seed become adopted as more routine practice in improved seed system?
  • A framework for understanding availability, access and use of quality seed  has been developed and specific research questions have been proposed around this linked to a series of case studies.

 At the end of the first day, CIP hosted an Open House afternoon, showcasing the center’s work in areas including a demonstration of remote sensing of a potato field using a drone and in-house software to collect and analyze the data, and an introduction to the Genebank’s collection of in vitro germplasm of potato, sweetpotato and Andean roots and tubers.

Day two of the meeting covered the highlights from Themes 5 and 6:

 Theme 5 – Developing tools for more productive, ecologically robust cropping systems

  • Developing ability to provide targeted recommendations about the next steps for cropping systems improvement, as a function of a farm’s current status (technology limited, resources limited, decision limited).
  • Providing recommendations that can be used by farmers immediately for more robust and profitable cropping systems.
  • Support for farmer soil management through careful analysis of nutrient balances shows promise for smallholder banana production.

Theme 6 – Promoting post-harvest technologies, value chains, and market opportunities

  • Sensory tasting for cassava should be product specific. For example, Gari can be eaten dry, as a paste, in porridge etc. When you want to evaluate the acceptability of Gari you have to decide on one of the products.
  • Much work has gone in to improving drying technologies and there is evidence that some technologies are preferred more than others, such as Cabinet driers in Tanzania.
  • Interlinkages with other projects are building on work that has already been done, e.g. RTB-ENDURE project is testing improved clones in development of value chains in Uganda.
  • Climate change effects: research has shown that the production of bitter alkaloids in the potato tuber increases with temperature making them unacceptable, this has strong implications for  climate change in potato

The meeting concluded with a smaller two-day workshop on 11-12 December to refine the program’s shift away from research ‘themes’ to a new structure based on five ‘flagship projects’ in 2016. More detail about RTB’s new flagship projects will be coming soon.