Tag Archives: banana

How RTB researchers try to develop the potential of RTB seed systems

Roots, tubers and bananas share one characteristic that unites them in the CGIAR Research Program on Roots, Tuber and Bananas (RTB): farmers multiply them vegetatively, rather than as true seeds produced by sexual reproduction. Of course, they are also extremely important for the food security, nutrition and livelihoods of the most resource-poor farmers on Earth. And that makes a recent paper in the journal Food Security, which asks why interventions in RTB seed systems do not reach their full potential, important to policy-makers and farmers alike.

Together with RTB colleagues, Conny Almekinders, of Wageningen University in the Netherlands, examined 13 previous efforts to improve seed systems for potato, sweetpotato, cassava, yam and banana. “We began to look at these cases in 2014,” Almekinders said, “as it became clear that an increasing number of RTB projects were introducing new varieties and improved multiplication practices, especially in Africa.”

“The case study documents did not show us evidence of many efforts to understand target seed systems,” Almekinders added.

Too often, the projects did not consider the fact that they were intervening in an existing local seed system or farmers who were known to be local seed experts. Many projects simply assumed that some farmers would specialize and become seed-supply entrepreneurs to fill the gap where the public sector could not reach, and the private sector was absent or uninterested. Such projects were often founded on the idea of a central source of high-quality foundation stock, usually produced with advanced technology, such as aeroponic micro-potatoes, yam mini-setts, and tissue culture bananas. These would then be passed to “decentralized multipliers” who would create further generations for distribution.

This approach succeeded sometimes, as with sweetpotatoes in Rwanda, where there was a good link to market for the products. In other cases, Almekinders says, “without project support and subsidies, the technical and economic viability of these decentralized multipliers is not clear.”

One problem, especially in sub-Saharan Africa, is that many farmer cultures consider it inappropriate to pay or to ask for payment for planting material. This reticence may be partially overcome in the case of new varieties, but otherwise is likely to limit the opportunities for business-based informal RTB seed systems.

Some projects, such as the introduction of orange-fleshed sweetpotato in Mozambique, focused on health and nutrition and barely considered the seed system. Despite this, adoption and spread, via the informal seed system, have been impressive. “Orange-fleshed sweetpotatoes are now being grown by thousands of women on small plots of land,” Almekinders said. Varieties will spread and be adopted if farmers see a benefit.

RTB community of practice on one of their learning journeys, a joint visit of KEPHIS laboratories in Nairobi, Kenya

Pros and cons

Vegetative reproduction means that the variety keeps its genetic characteristics, unlike sexually produced seeds. This is a boon when getting new material into the hands of farmers, because it means they can share the improved material in their communities. The flip side, however, is that viruses and other diseases can accumulate in the planting material, reducing its performance.

Farmer-to-farmer diffusion remains the primary route for adoption, as farmers with good experiences multiply the improved material and share it with others. For banana, cassava and potato, the cases show that farmers often share new material with five or more others.

Unfortunately, diseases often spread along with the crops, as they have recently for viruses of cassava in eastern Africa and banana bunchy top virus in the Congo basin. Such degeneration is perhaps the most common reason for farmers to seek RTB planting material off their farm. Although this suggests an additional motivation for decentralized multipliers, there is little evidence that farmers will pay for clean planting material of varieties they already have.

What farmers want

The lack of demand is not simply because farmers do not understand the benefits; in many cases they lack other essential resources to make use of better planting material, such as capital or knowledge. Researchers may insert ‘demand’ in their project proposals, but when the project fails to distribute the expected amount of material, they seldom analyze the reasons why predicted demand did not materialize.

“Improved assessment of farmers’ demand will contribute to improving seed system interventions,” said Almekinders.

Government policy represents another barrier to improved seed systems. Certification schemes that guarantee the quality of planting material may raise costs beyond the reach of most farmers. But the absence of such schemes leaves farmers open to the sale of poor-quality seed.

Potential delivered

A 1990 study of potato identified many of the same problems as this more complete and wide-ranging survey of RTB seed interventions. “Not much seems to have changed since,” said Almekinders. But change is now in the air. The International Potato Center is already applying a diagnosis of existing seed systems to all projects going forward. And the project has started to create change beyond RTB.

“Just last week I learned that our framework is being used in a PhD project in Eritrea,” Almekinders said. “The key to progress is to pay attention to what works where, and for whom, and how to scale up good practices. We have not been good at understanding RTB systems or listening to what farmers really need. If we want to improve RTB crops, we have to improve RTB seed systems too.”

CGIAR centres and research programs combine forces to reduce the damage of banana disease in Uganda

Bananas and plantains (Musa spp.) provide a major source of food and income for over 30 million people in Eastern and Central Africa (ECA). Uganda produces an estimated 10 million tonnes annually valued at about US$550 million. Most ECA bananas are domestically consumed with the highest global per capita consumption of over 200 kg. Banana Xanthomonas Wilt (BXW), a bacterial disease, emerged in Uganda in 2001 and has since proved to have a devastating effect on banana production, with up to 100% loss if no management practices are adopted. To control the disease, farmers can adopt a package of practices, including single diseased stem removal and cleaning of tools to prevent contamination. Alternatively, resistant cultivars are under development. Several policy interventions are thus available but it is not clear which will have the greatest impact on curbing the spread of BXW while minimizing the costs.

Bioversity International, under the umbrella of the CGIAR Research Program on Roots, Tubers and Bananas (RTB), organized a workshop in Kampala, Uganda, 1–2 February 2018, to understand better the socio-economic impact of BXW spread and quantify the role of policy interventions. The goals of the workshop were to:

  1. Finalize and validate the conceptual framework describing relationships between different elements of BXW spread and its socio-economic consequences, linking different scales – from farm to country levels
  2. Finalize and validate research questions of the study
  3. Identify what data, methods and models are available and what resources are needed to fill in the missing elements
  4. Generate a framework for linking the models 
  5. Formulate scenarios for simulation modeling, which would represent possible alternative future (until 2050) developments to inform policymakers
  6. Roadmap tasks and deliverables 

The research will answer the question: What will be the socio-economic impact of BXW spread in Uganda until 2050 if there are no policy interventions, and under different interventions?

A shrivelled male bud is a symptom of Xanthomonas wilt. Credit: Bioversity International/A. Vezina

This highly complex question requires an integrated modelling approach which can be modelled to see the impact of different interventions on banana production, producers’ revenue, market prices, consumption and nutrition, and link them to costs for different actors, starting from the government and ending with farmers. To address such different areas of focus and implications at multiple scales, from the farm to (inter)national level, the research brings together a highly multidisciplinary team hailing from different CGIAR research centres, different disciplines (agronomists, economists, plant pathologists, mathematicians), different CGIAR research programs, different flagships within the CGIAR Research Program on Roots, Tubers and Bananas, together with representatives of Makerere University and the National Agricultural Research Organization of Uganda.

This innovative research links various models in order to understand the economic impact of pest and disease spread. We start with the dynamic global partial equilibrium model – IMPACT, developed by the International Food Policy Research Institute (IFPRI) with support from the CGIAR Research Program on Policies, Institutions and Markets (PIM). This is an economic simulation model for analysis of long-term agricultural markets and food security. A crop disease mapping model based on statistical analysis of survey data will be combined with a mathematical model for disease spread dynamics, in order to inform the IMPACT model about the dynamics of BXW spread and its consequences for yield loss. Additionally, we will systematically assess costs borne by different actors in the food system. 

By combining expertise from RTB research clusters on resilient crops, banana bacterial wilt, improved livelihoods at scale, foresight and impact assessment, and sustainable intensification/ diversification, and linking those with the IMPACT model, we have the potential to make innovative breakthroughs that can truly make a difference in the management of the devastating BXW disease and defend Uganda’s economic base and food security. 

Read the original article and learn more about Banana Xanthomonas Wilt on the Bioversity International website. 

This research is part of the CGIAR Research Program on Roots, Tubers and Bananas and is supported by CGIAR Fund Donors. Additional support, for the IMPACT modelling part was provided by the CGIAR Research Program on Policies, Institutions and Markets (PIM) through the Global Futures and Strategic Foresight project.

Revolutionary mobile app for monitoring crop pests and diseases

Just as the late blight epidemic wiped out potato fields in Ireland in the 19th century, crop pests and diseases still have devastating effects on smallholder farmers today – with scenarios projected to worsen under climate change.

Cassava brown streak disease is spreading westward across the African continent, and together with cassava mosaic disease, threatens the food and income security of over 30 million farmers in East and Central Africa. Likewise, banana is threated by fungal and bacterial diseases and banana bunchy top virus, while sweetpotato is faced with viruses and Alternaria fungi.

Farmers are often unable to properly identify these diseases, while researchers, plant health authorities and extension organizations lack the data to support them.

To overcome these issues, a team under the CGIAR Research Program on Roots, Tubers and Bananas (RTB), are working on a revolutionary app to accurately diagnose diseases in the field, which will be combined with SMS services to send alerts to thousands of rural farmers.

Diagnosing cassava disease in the field. Photo IITA

The team, led by David Hughes of Penn State, and James Legg of IITA – who leads RTB’s flagship project on Resilient Crops – together with scientists from CIAT, CIP and Bioversity International, are presenting their proposal as one of 12 finalists for a $US100,000 grant as part of the CGIAR Platform for Big Data in Agriculture Inspire Challenges at the Big Data in Agriculture Convention 2017 in Cali, Colombia this week.

The concept leverages three critical advances in how knowledge is communicated to the farm level: 1) the democratization of Artificial Intelligence (AI) via open access platforms like Google’s TensorFlow, 2) the miniaturization of technology allowing affordable deployment and 3) the development of massive communication and money exchange platforms like M-Pesa that allow rural extension to scale as a viable economic model enabling last mile delivery in local languages.

Painstaking field work using cameras, spectrophotometers and drones at RTB cassava field sites in coastal Tanzania and on farms in western Kenya has already generated more than 200,000 images of diseased crops to train AI algorithms.

Using many of these images, Hughes, Legg and collaborators were able to develop an AI algorithm with TensorFlow that can automatically classify five cassava diseases, and by collaborating with Google, the team have been able to develop a TensorFlow smartphone app that is currently being field-tested in Tanzania. Penn State has also developed a mobile spectrophotometer through a start-up called CROPTIX. Early results suggest it can accurately diagnose different viral diseases in the field, even if the plant looks healthy.

 “The concept leverages RTB’s global network across multiple crops for testing and scaling with national partners and the private sector in all three continents where we work. This technology will enable small-scale farmers to quickly take action and stop the spread of pests and diseases in their farms, protecting these critical sources of food and income security,” said Graham Thiele, RTB Program Director. “We are really excited about this initiative and delighted to be teaming up with Penn State,” he added.

A Tanzanian farmer examines his cassava plants for the presence of pests and disease. Photo H.Holmes/RTB

The project team has already developed linkages with the Vodafone agriculture SMS platform called DigiFarm, which positions them strategically to link digital diagnostics to large-scale rural text messaging services. The team will deliver farmer tailored SMS alerts on crop diseases and pests to 350,000 Kenyan farmers by July 2018.

Once the diagnostic and SMS systems are up and running, their impact will be determined by assessing how rapid disease diagnosis increases yield in cassava value chains in Kenya involving 28,000 farmers.

An existing platform housed by Penn State (www.plantvillage.org) will enable real time discussions of disease and pest diagnoses across the CGIAR community and with other experts to enhance SMS alerts from the DigiFarm platform.

It’s is envisaged that these innovations, initially piloted in East Africa, will provide a model that can be extended to the range of locations where RTB works, and in so doing impact the farming and livelihoods of hundreds of millions of farmers.

See more in the project flyer. 

Increasing the resilience of roots, tubers & bananas

Given its focus on the resilience of root, tuber and banana crops, Flagship Project 3 (FP3) aims to incorporate environmental, biological, ecological and economic considerations into the various ‘clusters’ – distinct projects within the flagship.

Crop resilience can be compromised in myriad ways, notes James Legg, FP3 leader and a plant virologist at the International Institute of Tropical Agriculture (IITA). Among them:

  • Biological factors: including pests, diseases and the inevitable introduction of alien invasive species into a new geographical region as a function of increased international trade and people’s global movement patterns
  • Environmental factors: ranging from drought and increased soil salinity to unexpected spikes or drops in temperature
  • Agro-ecological factors: such as the over-exploitation of land through multiple cycles of cropping, which leads to soil degradation, nutrient deficiencies and other problems
  • Social factors: T for example, population growth leading to greater pressure on agricultural land, or the impacts on shareholders of increasingly smaller farming plots
  • Factors related to changing global climate: these effects will differ greatly among crops and could include shortened life cycles and increased economic damage from major pests.

Cassava farmer examines his field infected by cassava witches’ broom disease in Cambodia. Photo G.Smith/CIAT

Across this array of threats to resilience, technology is vitally important for achieving the goals of FP3, Legg says. For example, sequencing DNA from a specific pest can help the team determine which species are present in which locations, leading to more precisely targeted control efforts.

Moreover, the ability to use new tools to diagnose a disease more quickly and cheaply goes a long way toward containing the threat it poses.

“The invasive pathogen Fusarium oxysporum fsp cubense – Tropical Race 4 – was detected for the first time on the African continent, in a single farm in Mozambique, through the use of a molecular diagnostic method using polymerase chain reaction (PCR),” Legg says. “FP3 scientists and their partners are now using these diagnostics in a containment programme that will map the geographic spread of this new pathogen prior to designing a comprehensive control strategy.”

Yellow and wilted leaves are typical symptoms of Fusarium wilt. Photo G.Blomme/Bioversity International

Sometimes, efforts to boost crop resilience occur in isolation from efforts to enhance other desirable traits. Yet that won’t always be the case: Legg observes that increasingly in Phase II, FPs will combine to “bring these two lines of work together so that improved nutritional profiles” – whose development IN orange-fleshed sweetpotato (OFSP), cassava and banana is being addressed in FP2 and FP4 – “will be combined with resistance to major biotic and abiotic threats in new varieties developed and promoted.” In fact there are multiple natural points of intersection among FP3’s focus on resilience and its sister flagships. By the same token, germplasm development work housed under FP2 will dovetail with specific clusters in FP3. In addition, FP3’s project to improve diagnosis and control using phytosanitation of banana bunchy top virus (BBTV) is being linked to other flagships to help scale up efforts to control its spread.

In theory, how long would it take for Legg and the rest of the FP3 team to ascertain if resilience has increased in a given crop? It all depends on the factors against which resilience is being gauged, he says.

For example, since FP3 covers much of RTB’s disease-management work, it might only require two or three growing seasons (ideally in different locations) to measure whether crops now display greater ability to withstand pest and disease pressures. Yet “for factors such as climate change or soil degradation, the period required may be longer,” he says.

“Much of the cross cutting thinking on resilience in FP3 is being undertaken within cluster 3.2, Sustainable Cropping Systems,” Legg continues. “Under this cluster, research is being undertaken that aims to develop resilient production systems. Since this work considers the whole system, with its diversity of crops and environments, there is an inherent complexity. This will mean that it will take several years before systems with enhanced resilience can be developed, and several more years before the robustness of those systems can be confirmed.”

Cassava farmer, Mr. Khalifa Omari Nkrumah, of Mkurangra district, Tanzania inspects his cassava plants for the presence of Cassava Brown Streak Disease. Photo H.Holmes/RTB

As resilience increases, so too can smallholders’ potential economic and social benefits. Yet Legg cautions that there’s no quick path from greater resilience to greater revenue.

“Yield increases can be converted to estimates of economic gain and increased income,” he notes. “Calculating the impact at the community level is significantly more challenging, and requires the implementation of impact studies conducted at the community level both before baseline and after the implementation of resilience-promoting activities.” Typically speaking, community level change is achieved only after a meaningful period of scaling – which is where FP5 Improved Livelihoods at Scale will engage and support.

“The key theme unifying all of the FPs is the development of productive, profitable and sustainable systems that will ensure that roots, tubers and bananas make a major contribution to sustaining and enhancing the livelihoods of the growing number of people living in the tropical parts of the developing world,” Legg says. “In all the FPs, we share a common goal, and we are working closely together to achieve that.”

This is the third in a series of blogs showcasing the new Flagship Projects of the CGIAR Research Program on Roots, Tubers and Bananas. The next edition will examine Flagship 2 on ‘Adaptive Varieties and Quality Seed‘. By Amy Rogers Nazarov

Nutritious foods and added value for health and wealth

“It starts with the person who wants to eat affordable, safe, nutritious food,” says Simon Heck, the Mozambique-based sweetpotato project leader for the International Potato Center and the leader of RTB’s Flagship Project 4 on Nutritious Food and Added Value. “The urban consumer will [represent] the majority [of consumers] soon, and we must focus on how they” – along with the smallholders raising and selling the crops – “attain the benefits of roots, tubers and bananas.”

With that vision in mind, this flagship has an important focus on promoting utilization and uptake of biofortified crops – those bred for maximum nutrients – such as orange-fleshed sweetpotato (OFSP), cassava, potato and potentially banana and yam too.

Levels of beta carotene in both OFSP and cassava – which the body converts to Vitamin A – is an area of special interest considering its role in the health and development of young children. Lacking sufficient Vitamin A, tens of millions of children in developing countries suffer from stunted growth which limits mental development, as well as premature death and blindness.

Children under five years of age eating OFSP. Photo credit: HKI

While work to enhance OFSP is well underway in RTB, other biofortification efforts show a great deal of promise. Among them: boosting iron and zinc levels in Irish potato and breeding cassava that (like OFSP) contains higher levels of beta carotene. While “cassava doesn’t respond as quickly” as OFSP does, Heck notes, it’s just as critical a crop to smallholders in certain regions.

To that end, geography and economics figure into which crops warrant biofortification research within FP4. “You might say, well, OFSP is much richer in beta carotene than cassava – but cassava can grow in places where nothing else grows,” Heck notes. Indeed OFSP can contain more concentrated levels of beta carotene, “but it’s limited in terms of its distribution.” Potato may be able to modified to contain more zinc, but the higher costs of raising potato may limit the benefit that nutritional boost can have.

Approaches to promoting biofortification in one crop can be deployed in the service of another, Heck says. “You build on what has been achieved,” he says. “It’s one of the values of how RTB approaches this work: in our platform, we can exchange scientific methods to accelerate progress across [multiple] crops. We owe it to the farmers [growing crops] and to the children [consuming them] to make full use of what each of us knows.”

For all crops, the effectiveness of crop processing and storage methods will affect smallholders’ outcomes and consumers’ health, too. The best varieties and harvesting techniques mean little if half the crops are lost due to spoilage or pests, so FP4 is looking closely at best practices in these areas as well. Methods ranging from pureeing OFSP for distribution in vacuum packed bags, to processing zinc-rich potato into flour, to storing harvested crops underground or at ambient temperatures to better support their preservation may be suitable, depending on a region’s climate, topography, financial stability, electrical grid health and other factors, Heck says.

FP4 is also paying close attention to improving the efficiency and reducing the energy and environmental footprint of cassava processing. Great strides have been made to understand how the higher efficiency of large scale cassava processing plants in Asia could be replicated at a much smaller scale in Africa and Latin America, opening up an important space for south-south learning.

Cassava starch processing in Vietnam. Photo N.Palmer/CIAT

In its clusters, FP4 must also pay heed to gender roles that may have long dictated tasks around growing and selling crops.

“Two domains that are often separate in many countries come together [under the auspices of FP4],” Heck says. “Men’s domain roles tend to be perceived to be around agriculture, while those of women are perceived to be around caregiving and feeding. Now, a lot of our assumptions seem to imply that somehow a benefit generated in one sphere will translate into benefits in another sphere, but we know it is not that easy.” The question becomes: “How do we involve both men and women in both spheres?”

Remember: a lot of OFSP, for example, is actually grown by women, Heck notes. By the same token, “we want to involve men in childcare, nutrition, materials extension and activities.” While gender-based roles are certainly bound by tradition, “they are never written in stone.” Working with more organizations that already have credibility in checking these assumptions is key to breaking down gender-based barriers.

Loading OFSP on a bike in Western Kenya. Photo credit: HKI

In addition to working with organizations that can help examine gender-based assumptions, FP4 will develop partnerships with local health clinics and government agencies services. These organizations are often ideally placed to enable consumers to understand the healthful benefits of RTB through programs such as:

  • Teaching adults how to prepare these foods, processed or not
  • Working with pregnant women and mothers to help them learn about the role Vitamin A and other micronutrients play in the health of the developing fetus, infant and child
  • Measuring health outcomes within a given community over time

FP4 is largely about “overcoming barriers of acceptance of crops,” Heck concludes. “One good thing about the biofortification strategy is that the crops you are biofortifying are ones that already exist, that are accepted [in the region]. People already know how to cultivate them; they’re already part of people’s recommended diets. We can tap into the capacity that is already there” – and, partnering with Flagship 5 on ‘Improved livelihoods at scale’ and others, scale up efforts to amplify biofortification’s potential to boost crop nutrition, hardiness and stability in a changing, hungry world.

This is the second in a series of blogs showcasing the new Flagship Projects of the CGIAR Research Program on Roots, Tubers and Bananas. The next edition will examine Flagship 3 on ‘Resilient Crops‘. By Amy Rogers Nazarov

RTB-ENDURE banana project offers solutions for postharvest losses

Researchers collaborating under the ‘Expanding utilization of roots, tubers and bananas and reducing their postharvest losses’ (RTB-ENDURE) banana sub-project have identified solutions that will help Ugandan banana farmers and traders reduce income loss due to poor handling of their produce. The solutions were officially launched during the subproject’s final event which took place on 25-26 November 2016 in Masaka and Rakai Districts, Uganda.

Uganda produces about 10 million tons of banana per hectare per year , from an estimated 1.3 million hectares nationwide. For ordinary Ugandans, cooking banana is not just a staple crop but part of the socio-cultural fabric of the smallholder households and is used for medicine, bride price and marriage negotiations, birth and death rituals. The crop has been ranked number one for drought resilience in areas of the cattle corridor which are prone to prolonged droughts and frequent floods.

Participants listen during a session at the Final Event in Masaka. Photo by J.Turyatemba/Bioversity Internationa

In the event’s opening remarks, Dr Eldad Karamura, Bioversity International Regional Representative, said that in the last 15 years, NARO-Uganda and Bioversity International have collaborated on many banana research projects, largely in the pre-harvest sector of the value chain, including diversity conservation. He added that Bioversity International will move to further strengthen the postharvest sector to address hidden hunger in children and young mothers by promoting the consumption of vitamin A- and iron-rich bananas at the household level.

The banana sub-project is part of the larger RTB-ENDURE project implemented by CGIAR Research Program on Roots, Tubers and Bananas (RTB) with funding from the European Union and technical support of IFAD. The overall purpose of the RTB-ENDURE project is to improve food availability and income generation through enhanced postharvest management and expanded use of RTB crops in Uganda.

As part of the activities that took place to mark the final event of the project, a science day was held where research findings were disseminated to an audience consisting of researchers, banana farmers, civil society, government agencies, the media, agro-processors, exporters and local government officials.

At the event’s science day, Dr. Diego Naziri, RTB-ENDURE Project Coordinator, explained that bulkiness and high perishability of RTB crops coupled with poor postharvest handling and lack of processing and storage facilities result in a short shelf life, high postharvest losses and limited value addition.

The banana sub-project adopted the Participatory Market Chain Approach (PMCA) developed by the International Potato Center (CIP). Under this design, all actors (farmers, collectors, wholesalers, retailers, exporters, researchers, non-governmental organizations, etc.) in the banana value chain are brought together to jointly identify, analyse and exploit market innovations.

A Ugandan banana exporter prepares her produce. Photo S.Quinn/CIP

According to Dr. Enoch Kikulwe, the banana sub-project coordinator, 18.2% of all the cooking bananas produced in Uganda (corresponding to 47.3% of traded bananas) suffer postharvest losses. Of this amount, 8.9% of the bananas deteriorate completely and have no residual value while 9.3% only deteriorate partially and are sold at prices lower than their normal market rates. This particularly impacts retailers, who are largely women.

In order to maximize sales and income, farmers are advised to concentrate on banana varieties that already have an existing market and high untapped demand. The available identified varieties include Mbwazirume, Kibuzi, Musakala and Nakitembe.

In a gender analysis undertaken as part of the project by Susan Ajambo, a Gender Specialist with Bioversity International, it was found that women are concentrated in banana retail, which is the least profitable node of the value chain. The project therefore supported women to participate in the more profitable nodes of the value chain, such as in wholesale and the production of healthy planting material. According to Ajambo, both men and women have already embraced the macro-propagation technique and have established commercial chambers for selling clean banana plantlets of selected varieties.

Among the other areas, the project has also identified optimum harvest time and storage conditions for bananas, developed market linkages, trained hundreds of farmers in enhanced postharvest handling and piloted sales by weight.

During the final event, a tour to a commercial seed multiplication chamber and a mother garden at Ddwaniiro in Rakai district was also organised where farmer groups held practical demonstrations of the new techniques of multiplying popular banana variety cultivars for commercial farming.

A number of institutions partnered in the project, including the International Institute of Tropical Agriculture (IITA), CIRAD, NARO, KAIKA InvestCo, Uganda Fruits and Vegetable Exporters and Producers Association (UFVEPA), district local governments, and the Ssemwanga Group.

The project activities have been piloted in South-west Uganda in the districts of Rakai and Isingiro. This region produces 68% of the cooking bananas harvested in Uganda. The project began in 2014 and ended in December 2016.

Blog contributed by Joshua Turyatemba of Bioversity International 

How you can help to improve banana research priority setting

Research resources are scarce and making research portfolio decisions is complex and challenging. As part of a multi-crop priority assessment exercise coordinated by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), the impact of different research investments for bananas in terms of economic benefits, poverty reduction and number of beneficiaries has been estimated to provide a basis for prioritizing our research investments.

To close the consultation loop on this exercise, we are inviting stakeholders to participate in an online feedback survey. The survey answers will give the banana community the opportunity to evaluate the parameters used, and as such help to improve the quality of the results. Feedback on the methodology will also help adjust any future efforts. The survey takes only 15-20 minutes to complete. Currently, only the English version is available; the French and Spanish versions will be online by the end of the week. The feedback will be analyzed anonymously and shared on the Strategic Assessment of Banana Research Priorities website (available in English, French and Spanish).

To prepare for the survey, browse the knowledge toolkit to discover the method used to assess research priorities, starting with the results of an online survey to elicit the key constraints faced by small-scale banana producers. The survey, to which more than 500 banana specialists from 54 countries responded, led to the identification of the research options that were assessed.

The expected economic benefits and poverty reduction effects of the identified research options were then calculated using an economic surplus model and subsequent Cost-Benefit Analysis. The results are very encouraging and show that research benefits can run into billions of dollars: thus benefiting up to 31 million people and contributing to lift more than 3 million people out of poverty.

Take the Strategic Assessment of Banana Research Priorities: Feedback Survey

Strategic Assessment of Banana Research Priorities – New trilingual website and call for stakeholder feedback

As part of a multi-crop priority assessment exercise coordinated by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), the impact of five different research investments for bananas and plantains has been estimated.

We are delighted to announce the launch of a trilingual website that provides a knowledge toolkit introducing the methods and results of the priority assessment.

Photo: C.Staver/Bioversity

Photo: C.Staver/Bioversity International

Furthermore, we invite stakeholders to take a survey to give feedback on the parameter estimates used to help improve the results to help allocate research funds in areas where they generate the most impact for smallholder farmers.

Research resources are scarce and making research portfolio decisions is complex and challenging. As part of a multi-crop priority assessment exercise coordinated by RTB, the impact of different research investments for bananas and plantains in terms of economic benefits, poverty reduction and number of beneficiaries has been estimated to provide a basis for the strategy prioritizing of RTB research areas.

To elicit the key constraints that small-scale banana producers face, a comprehensive global online survey with more than 500 respondents from 54 countries and an expert workshop with 34 banana scientists were conducted in 2013. The expected economic benefits and poverty reduction effects of the identified key research investments were then calculated using an Economic Surplus Model and subsequent Cost-Benefit Analysis. The results are very encouraging and show that research benefits can run into billions of dollars, up to 31 million people can benefit and more than 3 million people can be lifted out of poverty.

P.LepointBioversity2

Photo: P.Lepoint/Bioversity International

To close the stakeholder consultation loop, we are now delighted to announce the launch of the website RTB Strategic Assessment of Banana Research Priorities (www.rtb-bananaresearchpriorities.org) that introduces the methods and results of the Strategic Assessment of Banana Research Priorities. The knowledge toolkit contains short explanatory texts and videos that guide the audience step-by-step through the different stages of the banana priority assessment.

Furthermore, we invite stakeholders to participate in a global online feedback survey. This will give the global banana community a chance to comment on the results and process of the RTB banana priority assessment and provide input to parameter estimates as well as process and methodology for any subsequent similar efforts.

The survey will only take 15-20 minutes to complete and will be available in English, Spanish and French on Monday, 6th February 2017. Individual email invitations to the survey will be sent to participants of the global banana expert survey conducted in 2013. In addition, an open link to access the survey will be provided on the site’s Survey page as well as the RTB, Bioversity International, and ProMusa websites and the websites of the regional banana networks.

Uganda President Museveni officiates at Bioversity International Banana Farmers Day

Story by Joshua Turyatemba for Bioversity International

Banana is one of the most important sources of food and income in Uganda. People consume on average 7 bananas per day and the local word for bananas – matooke – means food.

Last Friday 11 November 2016, Ugandan President Yoweri Museveni officiated at the first Banana Farmers’ Day, held in the South-Western district of Bushenyi. The district is one of the most affected by the banana bacterial wilt (BBW) infestation that peaked in 2013, with some farmers losing entire plantations and their source of income.

In a collaboration involving Bioversity International, the National Agricultural Research Organization-NARO, together with the Kenyan counterparts – the Kenya Agricultural & Livestock Research Organization – and the Rural Energy and Food Security Organization, scientists piloted a project and used control measures that saw the disease incidence reduced by 90-98% within 6 months of intervention.

The President visited one of the farm households involved in the project who had excelled at combating BBW using the control tools developed by Bioversity International and NARO. He later toured an exhibition of banana-related inputs and products and local projects such as the community seedbank.

Dr. Eldad Karamura, Bioversity International Regional Representative for Eastern and Southern Africa, welcomes President Museveni to the first Banana Farmers Day in Bushenyi, Uganda. Photo: J.Turyatemba/Bioversirt

Dr. Eldad Karamura, Bioversity International Regional Representative for Eastern and Southern Africa, welcomes President Museveni to the first Banana Farmers Day in Bushenyi, Uganda. Photo: J.Turyatemba/Bioversirt

In appreciation of the effort, the President offered four heifers to the homestead to enable them to increase their income as well as a source of manure for the banana plantation, which has since recovered and is now very productive. In the Bushenyi district, the disease incidence on farm has been brought down from 70-100% in 2012 to 2-5% currently.

Addressing the guests later at the ceremony, President Museveni said he is committed to ensuring that incomes at household level increase through mixed farming: “If a person has 4 acres, it is possible that by planting bananas, tea, coffee and rearing animals he can generate over 100 million Uganda shillings per year.”

Giving the example of Mr. Stanley Rwabukye, the host farmer who currently generates about 20 million shillings, the President said that he wants to see such models replicated all over the region and the country in order to get people out of poverty. “I am always talking about commercial farming. I am happy to see it is being done and that there are fruits. We need to address the bottlenecks of lack of water, poor soil and improve seed varieties,” he added.

Addressing the President and guests on behalf of Bioversity International, former Director General, Emile Frison, said:  “We are very pleased to work with such a strong collaboration of partners in Uganda to improve productivity, address food security and nutrition for smallholder households.”

As part of the project to combat BBW using the Learning and Experimentation Approaches for Farmers (LEAFF) management tool, competitions were held to select the best farmers out of 10 groups of 10 households each. The first and second overall winners – Mr. Stanly Rwabukye and Mr. Juvenal Mugyizi –received heifers. All the participating farmers went home with a gift.

The McKnight Foundation, who funded the project, and the project implementers Bioversity International and NARO were honoured with awards for their support and intervention by the BBW project farmers. The chief guest, President Museveni received an award by Bioversity International for his “wise leadership and support for agriculture in East and Central Africa.”

In his remarks, Dr. Eldad Karamura, the Bioversity International Regional Representative for Eastern and Southern Africa, emphasized that the control measures for BBW had been tested and found to be working effectively. Karamura added: “The Banana Farmers’ Day is an occasion for celebrating partnerships that were forged in combatting BBW as well as the recovery of livelihoods relying on bananas for income.”

The event was held under the theme ’Bananas for Better Livelihoods’ and attracted a large number of guests from the research, academic, policy, local leadership and agricultural sectors. The Banana Farmers’ Day was also attended by the Minister of Agriculture, Animal Industry and Fisheries; the Minister of Science, Technology and Innovation; and the Minister for General Duties in the Office of the Prime Minister; and Members of Parliament from the district.

This research is part of the CGIAR Research Program on Roots, Tubers and Bananas.

Stakeholders combat banana bunchy top disease

The International Institute of Tropical Agriculture (IITA) has intensified efforts aimed at preventing the further spread of Banana Bunchy Top Disease, that is debilitating banana production in sub-Saharan Africa.

The disease, first discovered in Nigeria, in Odologun community, in Yewa South council area in 2012 by IITA in collaboration with University of Ibadan and Nigerian Agriculture Quarantine Service (NAQS), has reportedly spread to Ado-Odo/Ota, Yewa North, Imeko-Afon and Abeokuta North council areas. It has also been recorded in Ibarapa zone of Oyo state…

Read the full article on The Guardian Nigeria